ABSTRACT
We describe a method of identifying and counting whales using very high resolution satellite imagery through the example of southern right whales breeding in part of the Golfo Nuevo, Penı´nsula Valde´s in Argentina. Southern right whales have been extensively hunted over the last 300 years and although numbers have recovered from near extinction in the early 20th century, current populations are fragmented and are estimated at only a small fraction of pre-hunting total. Recent extreme right whale calf mortality events at Penı´nsula Valde´ s, which constitutes the largest single opulation, have raised fresh concern for the future of the species. The WorldView2 satellite has a maximum 50 cm resolution and a water penetrating coastal band in the far-blue part of the spectrum that allows it to see deeper into the water column. Using an image covering 113 km2, we identified 55 probable whales and 23 other features that are possibly whales, with a further 13 objects that are only detected by the coastal band. Comparison of a number of classification techniques, to automatically detect whale-like objects, showed that a simple thresholding technique of the panchromatic and coastal band delivered the best results. This is the first successful study using satellite imagery to count whales; a pragmatic, transferable method using this rapidly advancing technology that has major implications for future surveys of cetacean populations.
INTRODUCTION
‘‘How many are there?’’ Is a question that is often difficult to address in ecology particularly for marine species that are generally inaccessible and cryptic. This is clearly demonstrated in whales where, despite their enormous size, robust population estimates are very difficult to obtain. The extreme size of whales means that they have a high per-capita rate of food consumption and hence a potentially massive impact on their prey opulations as well as the marine ecosystem. Accurate population estimates are also essential to inter alia assess the recovery of depleted populations, evaluate conservation threats and also to use whales as indicators of the health of local ecosystems. Here we investigate the use of available Very High Resolution (VHR) satellite imagery to detect and count baleen whales as a proof-of-concept to augment current population studies. We target Southern right whales (Eubalaena australis) as a test species to evaluate; the southern right whale is an ideal subject for this work for many of the same reasons as it was an ideal whale to hunt, specifically its large size (maximum size , 15 m) and a tendency, in the breeding season,
to bask near the surface in large aggregations around sheltered coastal waters. This is particularly true for mothers that use shallow water areas to raise their calves to the surface during their first months of life. The techniques described in this paper may also be relevant to other species of baleen whales, especially other large whales that, like the southern right, breed in calm coastal waters. Further work to test availability and erception bias of counting whales by satellite will need to be completed before the techniques described here can be used to independently assess
populations, such a system would reduce the observer cost and effort and improve the accuracy of population estimates and trajectories.
Southern right whales have a circumpolar distribution in the Southern Hemisphere. The distribution in winter, at least for
breeding animals, is concentrated in shallow coastal waters in the northern part of their range [1]. In summer right whales are found mainly in latitudes 40–50uS [2] but have been seen, especially in recent years, in the Antarctic as far south as 65uS [3,4] and around South Georgia [5,6].
Southern right whales were hunted extensively from the 17th through to the 20th century. The total number processed is conservatively estimated at about 155,000. The pre-whaling population was estimated at 55,000–70,000 dropping to a low of about 300 animals by the 1920s. After 1935 they were legally protected but over 3,000 more were thought to have been taken by illegal whaling in the 1960’s [7].
Since the cessation of whaling several southern right whale breeding populations (Argentina/Brazil, South Africa, and Australia) have shown a strong recovery [8,9,10] but the other breeding populations are still very small. In 1997 the estimated total population size was 7,500 animals and the three main populations have continued to increase [3,11,12]. Overall the population appears to have grown strongly since the cessation of whaling but is still at ,15% of even conservative historical estimates.
Of current concern is the unprecedented mortality of southern right whales on their nursery grounds at Penı´nsula Valde´s, Argentina, in what are the most extreme mortality events ever observed in a baleen whale [13]. Over 420 whale deaths in recent years, the majority of which were calves, suggests that this population and its ecosystem may be less healthy and robust than previously thought [13]. The traditional methods by which cetacean population abundance estimates are obtained use counts of whales along transects from platforms such as aircraft or ships, or counts from land-based vantage points [14]. These can be very labour intensive involving long hours of recording by trained researchers and, as whales range over large geographic areas, these survey methods can be costly and inefficient. Additionally, not all individual whales are present at once, and if present they are not easily detectable (so called availability and perception bias, respectively). Detection probabilities for whales are typically high for shipboard surveys, but for the study area, where surveys are typically carried out by small airplanes, they can be down to 40% [15]. In addition, there are not many precision estimates for southern right whale abundance, particularly for the study area. Typically abundance is assessed with line transect methods and for right whales from the same population in the Scotia Sea coefficients of variation are wide, ranging from 65 to 185% [16].
A previous attempt to count whales using satellite remote sensing data and had limited success [17]. Using the first generation of VHR imagery from the Ikonos satellite, with a resolution of 0.8 m in the panchromatic and 3.3 m in the colour bands, two areas were looked at: the orca pools at SeaWorld theme park in San Diego, and a section of coastal water around Maui known to have large numbers of humpback whales [17].
Although objects which were probably whales were identified in the IKONOS imagery, the lower resolution and the cluster and noise associated with waves sea-surface state meant that definitive sightings were difficult to prove. Since 2002 the spectral, spatial and temporal accuracy of high resolution satellites has improved and cost of acquiring such imagery has decreased. A number of recent studies have used VHR satellites to count animals such as penguins and seals from space [18,19,20]. The highest accuracy satellite, the Worldview2 satellite, has an on-the-ground pixel size
of 50 cm in the panchromatic and 2 m in its eight colour spectral bands. One of these bands, termed the coastal band, uses the far blue part of the spectrum to penetrate the water column and is routinely used for hydrographic mapping [21].
Here we describe a method of identifying and counting southern right whales breeding in part of the Golfo Nuevo in Argentina using satellite imagery from the WorldView2 satellite count. This is an ideal location to evaluate our methods because every year, from July to November, whales concentrate in high densities to calve and mate. These enclosed bays are characterized by calm and shallow waters increasing the chances of obtaining images with optimum conditions of visibility.